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Binary spreading process with parity conservation
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Recently there has been a debate concerning the universal properties of the phase transition in the pair
contact process with diffusion~PCPD! 2A→3A, 2A→0. Although some of the critical exponents seem to
coincide with those of the so-called parity-conserving universality class, it was suggested that the PCPD might
represent an independent class of phase transitions. This point of view is motivated by the argument that the
PCPD does not conserve parity of the particle number. In the present work we question what happens if the
parity conservation law is restored. To this end, we consider the reaction-diffusion process 2A→4A, 2A
→0. Surprisingly, this process displays the same type of critical behavior, leading to the conclusion that the
most important characteristics of the PCPD is the use of binary reactions for spreading, regardless of whether
parity is conserved or not.
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In the field of nonequilibrium critical phenomena, th
study of phase transitions from fluctuating into absorb
states continues to attract considerable attention@1#. It is be-
lieved that phase transitions into absorbing states can be
egorized into a finite number of universality classes char
terizing the long-range properties at the critical point.

So far two universality classes are firmly established. T
first and most prominent one is the universality class of
rected percolation~DP! @2,3#, which describes the spreadin
of particles according to the reaction diffusion scheme

A→
l

2A, A→
m

0, ~1!

where l and m are the rates for offspring production an
particle decay, respectively. In addition, particles are allow
to diffuse and the maximal density of particles is limite
Therefore, ifl is sufficiently high, the system is in a fluctu
ating~active! high-density phase, while for low values ofl it
reaches the~inactive! vacuum state within exponentiall
short time.

The second established universality class is the so-ca
parity-conserving~PC! class of phase transitions@4–6#,
which appear in spreading processes with parity-conser
dynamics such as

A→3A, 2A→0. ~2!

In this type of spreading process, particles can only ann
late in pairs so that the absorbing phase is characterize
an algebraicdecay of the particle density with time. In on
spatial dimension, parity conservation allows the particles
be considered as kinks between oppositely oriented dom
@7,8#. Using this interpretation, the process can be regar
as a directed percolation process with twoZ2-symmetric ab-
sorbing states~DP2! @9#. To some extent, the situation
similar to the one in the kinetic Ising model, although in t
present case the transition is generated byinterfacial noise,
instead of bulk noise@10#.
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Apart from these two established universality class
there are only few other possible candidates, the most m
terious being the pair contact process with diffusion~PCPD!,
sometimes also called annihilation-fission process. This p
cess was originally introduced by Howard and Ta¨uber as a
model interpolating between ‘‘real’’ and ‘‘imaginary’’ noise
@11# and corresponds to the reaction-diffusion scheme

2A→3A, 2A→0. ~3!

Interestingly, this model exhibits a nontrivial phase transiti
even in one spatial dimension. As in the PC class, partic
can only annihilate in pairs, so that the particle density in
inactive phase decays algebraically. Moreover, the model
two absorbing states, namely, the empty lattice and the s
with a single diffusing particle. Because of these similarit
and an apparent numerical coincidence of certain critical
ponents, Carlonet al. raised the possibility that the transitio
in the PCPD might belong to the PC universality class@12#.
A different point of view was presented in Ref.@13#, sug-
gesting that the broken parity conservation law in the re
tion diffusion scheme~3! should drive the system away from
the PC class, leading to the conjecture that the transitio
the PCPD might belong to a novel, yet unexplored univ
sality class.

Subsequent high-precision simulations@14# confirmed
that some of the critical exponents, especially the order
rameter exponentb, seem to be incompatible with the P
hypothesis, supporting the viewpoint of Ref.@13#. On the
other hand, the simulations revealed unexpected difficult
in particular unusually strong corrections to scaling. It turn
out that even after 107 time steps it is not yet clear whethe
the ‘‘true’’ scaling regime has already been reached. The
fore, the critical exponents in one spatial dimension co
only be determined with considerable uncertainty~see
Table I!.

Concerning the PCPD transition, there are many op
questions: Do the critical properties depend on the detail
the dynamics or do they indeed represent an indepen
©2001 The American Physical Society03-1
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universality class that has not been investigated before? D
the simple scaling picture, which involves only a sing
length scale, still apply or is it necessary to consider
possibility of multiscaling? What is the origin of the scalin
corrections and what are the precise values of the crit
exponents?

A possible phenomenological explanation of the transit
in the PCPD was proposed in Ref.@15#. This explanation is
based on the assumption that the most salient features o
process are the interplay of~a! diffusing solitary particles,
and ~b! spreading when at least two particles meet at nei
boring sites. It was conjectured that a cyclically coupl
model with two particle species consisting of a DP proc
and an annihilation process should display the same cri
behavior as the PCPD. In fact, numerical estimates of
critical exponents seem to be compatible with the PCPD
sults. However, the mere numerical coincidence wit
rather large error bars cannot yet be regarded as a p
Therefore, it would be interesting to investigate the probl
by alternative methods such as real-space renormaliza
@16#.

Since in Ref.@13# the main argument against the PC h
pothesis has been the broken parity conservation law in
PCPD, it would be interesting to find out what happens if
conservation law is restored. This can be done by modify
the particle creation process in the reaction-diffusion sche
~3!, e.g., by considering the process

2A→4A, 2A→0. ~4!

In this process, the number of particles is conserved mod
2. As a surprising result, which will be presented below,
find that this modification does not change the type of criti
behavior at the transition, i.e., the process still behaves in
same way as the PCPD, as already observed in the c
sponding bosonic field theory@11#. Thus, in the attempt to
understand the physics of the PCPD, it would be mislead
to focus exclusively on the parity conservation law, rathe
is more important whether we are dealing with aunary or a
binary spreading process. In a unary spreading process~e.g.,
in DP and PC models!, a single particle is able to produce
one or several offspring. On the contrary, in a binary spre
ing process such as the PCPD, two particles are require
meet at the same or neighboring sites in order to gene
offspring.

Definition of the model.The process defined in Eq.~4!,
which will be studied in the present work, is a binary sprea

TABLE I. Estimates of the critical exponents for directed pe
colation, the parity-conserving class, and various binary sprea
processes.

Class b n' n i

DP 0.2765 1.0969 1.734
PC 0.92~2! 1.83~3! 3.22~6!

PCPD , 0.6 1.0 . . . 1.2 1.8 . . . 2.1
Cyclic model 0.38~6! 1.0~1! 1.8~1!

Present work 0.50~5! 1.17~7! 2.1~1!
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ing process with parity-conserving dynamics. It is defined
a one-dimensional lattice withL sites and periodic boundar
conditions, where local variablessi50,1 indicate whether
the site is empty or occupied by a particle. The model
controlled by a single parameterp and evolves by random
sequential updates according to the following dynamic ru
For each update a sitei is randomly selected and a rando
numberzP(0,1) is drawn from a flat distribution. Then th
following moves are carried out:

~i! If p,z and sitei is occupied by a particle, it hop
randomly to the left or to the right. If the selected target s
is already occupied, both particles annihilate instantaneou

~ii ! If p.z and the two sitesi andi 11 are occupied, this
pair of particles generates two offspring to the left~sites i
22,i 21) or to the right~sites i 12,i 13) with equal prob-
ability. If the generated particles land on an already occup
site, they annihilate instantaneously.

As usual,L update attempts correspond to a time increm
of 1. The dynamic rules given above can also be defined
terms of a reaction-diffusion scheme

0A↔A0 at rate p/2

AA→00 p

AA00↔AAAA q/2

00AA↔AAAA q/2

AAA0↔AA0A q/2

0AAA↔A0AA q/2,

whereq512p.
Numerical analysis.In order to estimate the critical expo

nents characterizing the transition between the active and
absorbing phase, we performed standard Monte Carlo si
lations. To this end we measured the density of partic
r(t)51/L( isi(t), starting with a fully occupied lattice a
initial condition. At the critical point, this quantity shoul
decay algebraically asr(t);t2d. Using this criterion
~see Fig. 1! we estimated the critical point bypc
50.0895(2). For thedecay exponent we obtain the estima

g

FIG. 1. The density of particles,r(t), timest0.236 as a function
of time for p50.0893, 0.0894, 0.0895, 0.0896, and 0.0897 fro
top to bottom, averaged over 2000 runs on a system with 2
sizes.
3-2
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d5b/n i50.236~10!. ~5!

Next, in order to determine the dynamic exponentz
5n i /n' , we performed finite-size simulations at the critic
point. Here the density of particles should obey the followi
finite-size scaling form:

r~ t,L !;t2d f ~ t/Lz!, ~6!

where f is a universal scaling function. Using the previo
estimate d50.236, the best collapse is obtained forz
51.80(5) ~see Fig. 2!. Similarly, the third independent ex
ponentn i can be determined by studying the behavior of
density of particles below and above criticality. Here we e
pect the scaling form

r~ t,e!;t2dg~ ten i!, ~7!

where e5up2pcu denotes the distance from the critic
point. Using the estimated50.236, the best collapse is ob
tained forn i52.1(1) ~see Fig. 3!. Combining these estimate
we arrive at the result

b50.50~5!, n'51.17~7!, n i52.1~1!. ~8!

As an additional test, we performed dynamic simulatio
starting with a seed of a single pair of particles located in
center, measuring the survival probabilityP(t) that the sys-
tem has not yet reached an absorbing states, the ave
number of particlesN(t), and the mean square spreadi
from the origin R2(t) averaged over the survival runs. A
criticality these quantities should obey the power lawsP(t)
;t2d8, N(t);th, andR2(t);t2/z, whered8 and h are dy-
namical exponents. Measuring these quantities we obs
strong corrections to scaling, which make it impossible
obtain reliable estimates for the critical exponents. Fitt
straight lines over the last decade we find the values~see
Fig. 4!

d8'0.1, h'0.2, 2/z'1.15, ~9!

FIG. 2. Finite-size data collapse according to Eq.~6! for system
sizesL564, 90, 128, 180, and 256 averaged over 50 000 runs
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without being able to estimate the errors. Nevertheless
estimate for 2/z is in rough agreement with the previou
estimatez51.80(2).

We also measured the density ofpairs of particles, which
can be used as an alternative order parameter in the pre
model. Here we find the same type of critical behavior,
though with slightly different estimates for the critical exp
nents.

Discussion.As shown in Table I, our estimates for th
critical exponents are in fair agreement with those of
PCPD. In particular, we can rule out the possibility of a D
or a PC transition. This result is surprising, since it sugge
that we can introduce an additional symmetry without cha
ing the critical behavior of the transition. This means th
parity conservation isirrelevant for the long-range propertie
at the transition.

To understand this observation, we note that there is
other well-known example where parity conservation is irr
evant, namely, the annihilation process 2A→0 in compari-
son to the coagulation process 2A→A. Both processes are
known to belong to the same universality class and can e
be related by an exact similarity transformation@17#. This is
due to the fact that the even and the odd sector in the pa

FIG. 3. Data collapse for off-critical simulations according
the scaling form~7! for e50.0001, 0.0002, . . . , 0.0064 averaged
over 2000 runs.

FIG. 4. The survival probabilityP(t), the average number o
particlesN(t), and the mean square spreadingR2(t) starting with a
single pair of particles.
3-3
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conserving process 2A→0 are essentially equivalent, sinc
in both cases the particle density decays algebraically u
the system is trapped in an absorbing state~namely, the
empty lattice or a state with a single diffusing particle!.
Breaking the parity conservation law by a weak perturbati
the system begins to switch between the even and the
sector. However, this ongoing switching process does
change the universal behavior since, from a macrosco
point of view, the physical properties of both sectors can
be distinguished. In the present model the situation is q
similar. In both sectors we have a transition from an act
phase into an absorbing state. Therefore, the physical p
erties of both sectors are essentially the same so that
breakdown of parity conservation does not change the c
cal behavior.

In the PC class, however, the situation is completely d
ferent. In this case parity conservation is indeed relevant.
example, in the branching-annihilating random walk w
even number of offspringA→3A, 2A→0 the two sectors
are not equivalent because only one of them has an abs
ing state. Therefore, even a tiny violation of the conservat
law drives the transition away from the PC class.

How can we verify whether parity conservation in a giv
system is relevant or not? One way would be to investig
how the critical behavior changes if the symmetry is brok
Another much more elegant method would be to comp
s
e,

e

06510
til

,
dd
ot
ic
t

te
e
p-
he
i-

-
or

rb-
n

te
.
e

seed simulations in the even and the odd sector~i.e., starting
with two or three particles!. Here the survival probability
P(t) has to be defined as the probability that there are
least two particles left. If the survival exponentd8 and the
critical initial slip exponenth are different in both sectors~as
they are in the case of the PC class!, parity conservation is
relevant. However, if the exponents do not depend on
sector~as in the present model!, we expect the parity sym
metry to be irrelevant.

In the light of these results, the conjecture of Ref.@13# has
to be refined. It is true that we cannot have PC critical b
havior in systems without parity conservation or an equi
lent Z2 symmetry. On the other hand, the broken parity co
servation law is not the main characteristic of the transit
in the PCPD; rather, it is possible to restore this symme
without changing the critical behavior. Therefore, a nec
sary condition for existence of this class, for which our u
derstanding is still incomplete, seems to be thebinary nature
of the process for offspring production, i.e., two particl
have to meet at the same place in order to create new
ticles.

This work was supported in part by Grant No. 98-702-0
01-3 from the Korean Science and Engineering Founda
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